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Abstract. Non-equilibrium statistical thermodynamics is discussed again from the informa- 
tion theory viewpoint of Jaynes. The outlook of Ingarden and Kossakowski is reviewed 
and analysed, with the result that a particular solution of the Liouville equation is derived, 
this solution being capable of describing non-equilibrium processes. This solution of 
Liouville's equation is split in a fashion which enables statistical mean values to be evaluated 
at any time in the history of a system in terms of mean values evaluated using the statistical 
index which, at that time, maximises the information entropy subject to various mean value 
constraints. The theory developed herein is then used to derive, under certain approxima- 
tions, the formalism of irreversible thermodynamics, the approximations made delineating 
the validity of the resulting theory. A brief comparison is made with other formalisms 
arising in non-equilibrium statistical thermodynamics. 

1. Introduction 

Irreversible processes may be split into two camps: those which may be regarded as 
caused by mechanical perturbations, and those which are caused by inhomogeneities 
in the system. (Though attempts have been made to express the latter in terms of the 
former; see Chester's review article for details [l].) It is the latter with which we wiil 
be most concerned here, i.e. systems in which diffusion, thermal conductivity and 
viscosity are of interest. In the succeeding sections of this paper we will develop a 
new theory of non-equilibrium processes, based on information thermodynamics as 
described in section 2, and apply it to various types of transport in a fluid. The theory 
will enable us to give also a microscopic derivation of the equations of irreversible 
thermodynamics, although the general theory which we develop in section 3 will not 
be limited merely to discussions of transport in fluids. 

There are many methods which are used to describe such transport processes as 
mentioned above. However, they are all concerned with showing that equations like 
the relation 

between the currents Ji and the thermodynamic forces xk (which are assumed to cause 
the transport in the system) are valid. It must also be possible to derive closed 
expressions for the transport coefficients L;k. Kirkwood [2] and Green [3] were the 
first to succeed in obtaining substantial results in the general theory of irreversible 
processes, using the theory of stochastic processes and the Fokker-Planck equation. 
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In particular, Kirkwood and Green obtained the relation between the transport 
coefficients and time correlation functions. For a classical system this is written as 

where the j i ( j k )  are the appropriate flux densities and ( denotes a statistical mean 
value. This method was later improved by Mori and Kubo [4-61. More recently 
Zwanzig and Nordholm have written a definitive paper using Zwanzig’s projection 
operator technique [7] (see also [ 8 , 9 ] ) .  

Apart from the indirect methods from the theory of linear response to a perturbation, 
see e.g. Kubo et al [lo], there are two other main methods not necessarily directly 
involving the information theory approach: that of Mori [ l l ] ,  which is based on the 
use of a local-equilibrium distribution as an initial condition for the Liouville equation, 
and that of Zubarev and McLennan, in which an expression is derived for the solution 
of the Liouville equation (or a variant thereof) called by Zubarev [12] the method of 
Gibbs’ statistical ensembles for non-equilibrium systems. Zubarev’s theory is based 
on the construction of local integrals of the motion [13], while McLennan’s theory is 
based on the calculation of the influence of a thermostat in terms of non-conservative 
forces [14, 151. Both theories give the same results. (It should be mentioned in passing 
that the theories of McLennan and Zubarev are not entirely independent of information 
theory ideas. In particular, the work of Zubarev and Kalashnikov should be referred 
to in this matter [16]. More will be said about this in section 5 . )  The reader may be 
referred also to the review article of Zubarev [17] and to Zubarev’s book [18]. 

The theory to be developed in this paper also includes a Gibbs’ statistical ensemble 
for non-equilibrium systems. Basically the theory involves writing a solution of the 
Liouville equation in a particular form which turns out to be very useful for the 
application of a so-called ‘cumulant expansion’ [ 191. In this cumulant expansion, 
mean values over p * ( t ) ,  the solution of the Liouville equation under specified initial 
conditions, are expressed in terms of mean values over p”( t ) ,  the statistical index with 
maximum entropy subject to given mean value constraints at time t. The initial 
conditions mentioned above may be summarised by the single initial condition p* (  t o )  = 
; ( to)  for some initial time to# t. 

Until recently not much work seems to have been done on applying the information 
theory approach to non-equilibrium statistical thermodynamics. Most of the early 
published work appears to have been done by Robertson using his time-dependent 
projection operator technique (see [20,21]) with which non-local equations of motion 
are derived for p ( t )  and the statistical mean values of a particular set of operators 
(called an r set in section 2). Other work which was done in and around the time of 
Robertson’s initial publications was mentioned in a review by Zwanzig. Zwanzig [22] 
reported work by Jaynes and an unpublished thesis by Scalapino. With the exception 
of certain formal relationships [23,24] this work remained unpublished for over a 
decade and these formal relationships were not (publicly) applied to any specific 
problems. Finally, in a seminal article [25] Jaynes published a fuller account of his 
ideas and sketched the application to non-equilibrium thermodynamics. Jaynes has 
since followed this up with other publications (see [26-291) again sketching develop- 
ments of the basic theory and reporting previously unpublished material, e.g. 
Michelson’s theory of macroscopic sources [28] (see also the footnote in [21]). 

The major review was left to another, however, when Grandy published his authori- 
tative overview ‘Principle of Maximum Entropy and Irreversible Processes’ [30]. Again 
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though, Grandy’s article refers to unpublished work, e.g. [30, refs [66] and [91] therein]. 
Grandy has since followed this article with a major book on the subject [31]. Other 
work that needs to be mentioned is Robertson’s more recent paper [32] and the work 
of Levine and his collaborators [33]. (See also the work based on Levine’s that is 
detailed in [34] and references cited therein.) 

The general outline of the paper is as follows. In section 2 the approach of Ingarden 
and Kossakowski is presented for field operators. That is, in section 2 the formalism 
and terminology of information thermodynamics for position-dependent observables 
are developed. Section 2 is a formal development of the work of Kossakowski [35] 
and Ingarden and Kossakowski [36] appearing already in the work of Robertson 
[20,32] for example, and Ramshaw [37] among others (especially Zubarev and 
McLennan, though in these works [13, 151 from a different viewpoint). The formalism 
of information thermodynamics provides a structure to hang non-equilibrium ther- 
modynamics on, as well as a clearly defined language with which we may discuss 
non-equilibrium processes in general. In section 3 the formalism of information 
thermodynamics is extended by clarifying the relationship between the two main 
statistical indexes of the theory, p * ( t )  and c( t ) ,  mentioned already in the above 
discussion. Essentially, mean values over p * ( t )  may be expressed instead as mean 
values over p’( t ) .  Section 4 sees the application of this extended formalism of informa- 
tion thermodynamics in the form of a derivation of the formalism of non-equilibrium 
thermodynamics. This is done for the case of a simple fluid as discussed by Grandy 
[30] and by Zubarev [17]. The reader is referred also to the original work by Mori 
[4, 111 for a clear and detailed discussion of the idealisations and assumptions that 
are inherent in this approach in general, and in particular the validity of treating the 
fluid system as isolated so that the fluid system’s temporal development is determined 
by a Hamiltonian. In the final section, section 5, the present formalism is compared 
with other similar cases, i.e. the work of McLennan and Zubarev cited already. 

2. Information thermodynamics 

In this section we present a particular account of the information theory approach to 
statistical mechanics following the work of Kossakowski and Ingarden [35,36]. The 
account presented below will be essentially non-rigorous in that mathematical existence 
properties will, in general, be ignored. This has not always been the case, however, 
and in the next subsection an informal review of this subject is presented which is 
intended also to act as an introduction to some of the wider mathematical aspects that 
Jaynes’ basic formalism gives rise to. Section 2.1 is both complementary to, and 
introductory to, the rest of this section as well. It must be stressed once again though 
that the review in section 2.1 is informal and not exhaustive. 

2.1. A partial overview of information theory and statistical mechanics 

In 1957 Jaynes put forward the idea [38] that by using concepts from information 
theory it should be possible to treat statistical mechanics as a form of statistical 
inference, rather than as an attempt to derive the bulk laws of matter directly from 
the microscopic laws of physics, which until then had been the usual philosophy. (For 
a contemporary review of this situation we refer to ter Haar [39]; for a more recent 
account see [40].) The method Jaynes proposed; he considered to be a generalisation 
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of Laplace’s principle of indifference (though see [41] for some further thoughts on 
this point), i.e. that, if there is no evidence to the contrary, then all possibilities are 
equally probable. This is generalised to ‘Jaynes’ principle’: statistical inferences on 
the basis of incomplete information should be founded on the most unbiased probability 
assumptions compatible with the given information. 

To implement this principle, Jaynes borrowed the idea, from Shannon [42], of a 
measure of the ‘uncertainty’ associated with any statistical index-probability density 
function or density matrix-corresponding to the ‘lack of information’ inherent in any 
probabilistic description. If we denote this measure by S, it turns out that in statistical 
mechanics S is just the ‘entropy’ of a probability density function or density matrix. 
That is, 

S ( p )  = - K  p log p ds I (2 . la)  

or 

S ( p )  = - K Tr p log p. (2.lb) 

In (2 . la) ,  the classical case, p is a probability density function and s an appropriate 
Lebesgue measure [43]. In (2.lb) p is a density matrix with Tr denoting the trace 
[44]. In both cases K is a positive constant. For a thorough review of the entropy 
concept see Wehrl [45]. Jaynes assumed also that the given information was the 
measured values of several properties of the system under investigation which were 
to be represented by the mean values of the respective observables (phase functions 
or operators). Using these concepts Jaynes now considered that the most unbiased 
probability assumption to make was to choose the probability density function or 
density matrix which was consistent with the given information and had the maximum 
entropy. That is, we use that probabilistic description which is consistent with our 
knowledge and maximally non-committal about our ignorance. 

By treating this ‘maximum entropy principle’ as a variational problem, Katz in his 
book on the subject [46] showed that the earlier work of Jaynes [23,38] could be put 
on a firmer mathematical basis. As well as rederiving the generalised canonical 
ensemble (see (2.10)) he gave necessary conditions for the Lagrange multipliers to 
exist and to be unique. (In the language of information thermodynamics Katz required 
the dynamical variables to be ‘thermodynamically regular’ and to be ‘informationally 
independent’.) 

There were various other existence problems not treated by Katz. These were 
investigated in the context of quantum mechanics by Wichmann [47], for the finite- 
dimensional Hilbert space case, and further developed to the case of infinite- 
dimensional Hilbert spaces by Ochs and Bayer [48]. Ochs and Bayer also utilised the 
earlier work of Ingarden and Urbanik [49] and Kossakowski [35]. Specifically investi- 
gated were the domains and ranges of the mappings defined by the statistical mean 
values, the ‘generalised partition function’ and the ‘entropy’ of a ‘macrostate’ (these 
concepts are defined in the next subsection to which we refer for details). Also 
investigated were the analytic properties (convexity, differentiability) of the generalised 
partition function and the macrostate entropy. 

There are treatments other than those mentioned above, see e.g. [50-531; these last 
four references all discuss finite-dimensional quantum systems. Particularly interesting 
is the approach of Mackey [50] who uses the theory of Laplace transforms to give an 
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account of statistical thermodynamics in which only the mean energy (i.e. one physical 
quantity) is considered. 

The information theory approach to statistical mechanics was further generalised 
to include field operators by Robertson [20] (see also [21,33]) and made use of recently 
by Ramshaw [37] and is indeed implicit in Zubarev’s approach [16]. There does not 
appear to be the same attempt to justify the general theory in the field format rigorously 
as there was in the straightforward operator approach, and in what follows we will 
assume that all analytical processes are valid (though some assumptions are explicitly 
made). Of course this is not the whole story since Jaynes [25] has developed the theory 
along different lines from Robertson and Ramshaw (see Hobson’s book [54] and 
previous references to Jaynes and Grandy). 

We are in a position now to discuss the information theory approach to statistical 
mechanics which has been called, by Kossakowski [35], ‘information thermodynamics’. 

2.2. Quantum information thermodynamics 

We proceed now to develop the quantum information thermodynamics, the classical 
theory follows in a well known manner [35]. We deal with a quantum Hamiltonian 
system with Hamiltonian H, assumed time independent. The state of our quantum 
Hamiltonian system is assumed to be represented by a density matrix p ( t )  satisfying 
the Liouville equation 

-- M r )  i - - - [ H , p ( t ) ] = - i L p ( t )  
at  h 

where [A, B ]  = AB - BA is, as usual, the commutator of the two operators A and B 
and the ‘Liouville superoperator’ L is defined as 

1 
iL=-[H,  1 .  

h (2.3) 

The statistical mean values of the Hermitian operator, A, B, . . . , are at time t given 
by, e.g. 

(A) ,=TrAp( t )  (2.4) 

with p ( t )  the relevant solution of (2.2). The quantum entropy of a density matrix p 
is, from section 2.1, 

(2.5) 

with K a real positive constant. S ( p )  as given by (2.5) is, in fact, the only measure 
of information or uncertainty compatible with certain axiomatic characterisations 
[ 5 5 ,  56,451 which is invariant under all unitary transformations in the underlying 
Hilbert space. 

To avoid certain existence and uniqueness problems (and redundancy difficulties) 
it is necessary to restrict the type of operators for which information thermodynamics 
is defined. Suppose then we have a set of operators Ai = Ai(r), i = 1,2, . . . , r which 
may be spatially dependent as they are in their second quantised from (see e.g. 
Robertson [57], Zubarev [ 171, Grandy [30 or 581) then we make the following assump- 
tion about the ‘allowable’ class of (possibly non-commuting) operators. 

S ( p )  = - K  Tr p log p 
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Definition 2.1. A set of (possibly non-commuting) Hermitian operators 

9 = { A i ( r ) ,  i = O ,  1 , 2 , . .  . ,  r , A o = I  and r = 1 , 2 , 3  . . . }  

is said to be a thermodynamic r set if and only if the following conditions are satisfied: 
(i) The A, are linearly independent. 
(ii) The operators A i ( r ) ,  i = 1,. . , , r, are ‘thermodynamically regular’. This condi- 

tion implies the existence of real functions P l ( r ) ,  . . . , P,(r )  such that the ‘generalised 
partition functional’ Z (  p )  satisfies the inequality 

for each region Rk, k = 1 , .  . . , r. 
(iii) Z ( p )  is sufficiently often differentiable (in a generalised sense) as is necessary. 

Condition (i)  guarantees the existence of the inverse matrix G, of (2.15) below 
[46]. Also, if condition (i)  is violated then the A, will not be ‘informationally indepen- 
dent’ [35,36]. If the A, are informationally independent then it is not possible to 
calculate the mean value of any one from the mean values of the others ( ( I )  = Tr p = 1 
expresses the normalisation of the density matrix p ) .  To see this we assume that 
Zrso a,A, = 0, but that C:=, af  f 0. Then since the A, satisfy a linear equation their 
mean values will also satisfy the same equation. That is 

(Yo+ akak = 0 (2.7) 
k = l  

where ak = Tr Ak(r)p .  In this case we see that by rearranging (2.7) we may calculate 
the mean value of any Ak from the mean values of the others. 

Condition (ii) ensures the existence of the entropy (maximum information entropy) 
of the ‘macrostate’, as will become clearer later on. Condition (iii) is the first of a 
number of technical assumptions that are necessary if the full formalism of information 
thermodynamics is to be developed. 

In the next definition we formalise the concept of a macrostate, i.e. a state of 
macroscopic knowledge compatible with a large number of microscopic descriptions. 

Definition 2.2. Let 9 be a thermodynamic r set, a,( i = 1, . . . , r )  be real numbers. Then 
the set of density matrices 

M = { p :  Tr p = 1, Tr A , ( r ) p  = a , ( r ) ,  i = 1 ,2 ,  . . . , r }  (2.8) 

is said to be the macrostate with respect to 9, a,( r ) (  i = 1,2, . . . , r )  and the underlying 
Hilbert space. The numbers, or rather functions, a , ( r )  are assumed to be defined over 
regions R,( i = 1,2 ,  . . . , r ) .  

Our problem, i.e. the basic problem of statistical thermodynamics, is encapsulated 
in the definition of a macrostate. We have a set of density matrices M constrained by 
the conditions (2.8) and we require a criterion to choose which one to use, i.e. the one 
that agrees with the ‘data’ (the a , ( r ) )  and assumes nothing else. The criterion for 
choosing the density matrix is Jaynes’ maximum entropy principle which assumes the 
following form. 

Maximum entropy principle. If the available information about the statistical state 
of a quantum (Hamiltonian) system does not distinguish a unique density matrix (or 
‘microstate’) but is compatible with a whole class of density matrices (the macrostate), 
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then the system must be described by the density matrix which has the maximum 
entropy (as defined by (2.5)) subject to the conditions defining the class (2.8). 

This principle leads us naturally to the next definition. 

De$nition 2.3. The ‘entropy’ S ( M )  of the macrostate M defined by relation (2.8) is 
the maximum entropy concerning microstate p when the macrostate M is known, i.e. 

(2.9) S ( M )  = sup{S(p): p E M ]  

where S ( p )  is given by (2.5). 

We are now in a position to state the main results of 
which we summarise by theorem 2.1. 

Theorem 2.1. Let M be a macrostate as defined by (2.8 
microstate p* E M such that 

P* = P * ( P )  = {-m)l-’ exp{-P ’ A )  

where 

P . A =  1 dr’Pk(r’)Ak(r‘)  
k = l  Rk 

and 

-a< S ( M )  = S ( p * ) =  K log Z(P)+ K P  * U <a 

nformation thermodynamics 

I Then there exists a unique 

(2.10) 

(2.11) 

with 

drrPk(r’)ak(r’) .  

Further, the functions P , ( r ) ,  Pz(r) ,  . . . , p ( r )  are the unique solutions of the equations 

6 
a , ( r )  = --log Z(P)  

SPI 

i = 1 , 2 ,  . . . ,  r and 

(2.12) 

(2.13) 

Finally we have the reciprocity relationship between the ‘covariance functions’ KU( r, r’): 

and their functional inverses 

That is 

(2.14) 

(2.15) 

(2.16) 
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This completes the basic formalism of information thermodynamics. We consider now 
the time evolution of the microstates, via (2.2), and develop the theory for arbitrary 
times. We assume the existence of a macrostate at some initial time to say, M,,, and 
define the concept of a macrostate at time t with t 3 to, M,. 

Dejnition 2.4. We define the macrostate at time t 5 to with respect to an r set 9 and 
initial ( t  = to)  mean values a,( r ) ,  az( r ) ,  . . . , a,( r )  as the set of density matrices: 

M ,  = { p :  Tr p = 1,  Tr Ai( r ) p  = Tr Ai( r ) p * (  1 )  = ai( r, t ), ( i  = 1,2, . . . , r ) }  (2.17) 

where p * ( t )  is the time evolved value (via (2.2)) of p * .  

The fact that we need only consider microstates with finite entropies follows from 
theorem 2.1 with the following definitions and assumptions. To begin with, the ‘entropy’ 
of the macrostate M ,  is defined analogously to definition 2.3. 

Dejnition 2.5. The ‘entropy’ S ( M , )  of the macrostate M ,  is the maximum entropy 
concerning microstate p when the macrostate M, is known, i.e. 

(2.18) S ( M , )  = sup{S(p): p E Mf) 

where S ( p )  is given by (2.5). 
Further, we define the ‘generalised partition functional at time t ’ ( t  3 t o )  as 

or, in vector notation, 

Z(p(  t ) )  = Tr exp{-p( t )  * A}. (2.20) 

We also assume that, if Z(p(t,)) is thermodynamically regular, Z ( p ( t ) )  is also. 

Using the above definitions and assumptions, theorem 2.1 tells us that the maximum 
entropy of the microstates p E M ,  is finite. Continuing to use theorem 2.1 we have for 
every time t 3 to  a representative microstate p’( t )  for the macrostate M ,  of the form 

i ( t )  = i ( P ( t ) )  = [z(p(t))l-’ exp[-P(t) AI (2.21) 

where again we have 

s 
a i ( r ,  t )  = -- s p ( r ,  t )  log 

(2.22) 

where ui(r ,  t ) = T r A i ( r ) b ( t ) , i = l  , . . . ,  r. 

entropy at time t is 
Thus, p ( t )  retains a ‘generalised canonical’ form at all times and the macrostate 

S ( M )  = S ( p ( t ) )  = K log z ( B ( t ) ) + K P ( t )  4 r ,  t )  (2.23) 
so that upon differentiating we have 

Note that 

; ( t o )  = p* ( to )  = P* 

but for t 3 to, b ( t )  and p * ( t )  can be different. 

(2.24) 

(2.25) 
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Theorem 2.2. Let M ,  be a macrostate known at time t = to ,  the initial time say. Then 
the following inequality holds for all t 3 I o :  

S ( M 0  5 S ( M , )  (2.26) 

where M ,  is the ‘time-ordered’ macrostate of definition 2.4. 

The proof of theorem 2.2 follows immediately from definition 2.5 of the macrostate 

- K  Trp’(t)logp’(t)>-K Trp*( t ) logp*( t )=  K Trp*logp*.  

entropy and by the dynamical invariance of S ( p * (  t ) )  [23,59], i.e. 

Thus 

S ( M r )  2 S ( M , )  (2.27) 

the equality holding if and only if p’( t )  = p * (  t ) .  
It is a consequence of theorem 2.2 and the discussion in Wu’s paper [60] that p’( t )  

is not necessarily governed by an equation which satisfies reversible dynamical laws. 
Jaynes [59] has used theorem 2.2 as a basis for a proof of the second law of thermody- 
namics. 

Levine [33] and his collaborators have investigated the problem of forcing p ’ ( t )  = 
p*(  t )  for all values of t 2 lo. (See also the papers of Duering eta1 [34].) The requirement 
that p’( t )  = p* (  t ) ,  t 5 to,  leads to a set of conditions (differential equations) for the 
parameters P ( t )  [33,34]. 

3. Non-equilibrium information thermodynamics 

In this section we describe the general method that we are proposing be used in solving 
problems in non-equilibrium statistical mechanics. We have seen in the previous 
section that information thermodynamics is characterised by the existence of two 
statistical indices: the representative microstate at time t, p’( t ) ,  which maintains a 
generalised canonical form for all values of t ,  and the solution of the Liouville equation, 
p * ( t ) ,  which is subject to the initial condition that at some initial time to, p*(  to)  = : ( to) .  
It is apparent that p * (  t )  and p’( t )  are related since p”( t )  is defined using p * ( t )  which 
in turn depends upon :(to) and the dynamics. Below, we will further elucidate the 
relationship between these two statistical indices, p ( t )  and p * ( t ) ,  and develop a general 
approach to handling non-equilibrium situations described by macrostates. 

We assume the existence of a macrostate at some initial time t o ,  M , ,  and consider 
the time-evolved macrostate M , .  From section 2 we know that M ,  is represented by 
the microstate p’( t )  where 

with, in the more general case, 

Equation (3.2) enables spatial dependence of the operators to be taken into account. 
If the operators are not spatially varying, then we drop the integral and are left with 
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a sum only. Z ( p (  t ) )  is, of course, the generalised partition function(a1) and is obtained 
from the normalisation condition for p’( t ) .  Thus, since Tr p(  t )  = 1, 

Z ( p (  t ) )  = Tr exp[-p( t )  A]. (3.3) 

(A),+s = Tr Ap*( t + s) (3.4) 

The mean value of any operator is given by 

where p * ( t )  is the solution of the Liouville equation under the initial condition 
p*( to)  = { ( t o ) .  Since 

p*(t+s)=exp(-iLs)p*(t)  (3 .5)  

(A)t+s = (A(s)), (3.6) 

(3.5) may be rewritten in an ‘intermediate’ representation 

with 

A(s) = exp(iLs)A 

i.e. 

A ( s ) = e x p ( F s ) A  exp( - y s ) .  

(3.7a) 

(3.7b) 

If A is a member of the r set associated with the macrostate M,o, then the mean values 
calculated using p * ( t )  and b ( t )  will coincide by definition. However, if A is any 
arbitrary operator this may not be so. Even so, the mean value over b ( t )  will still be 
instantaneously the best estimate possible given M,. 

The essence of the method presented below is to cast p * ( t )  into a form in which 
the mean values over p* (  t )  may be expressed in terms of mean values over p’( t )  using 
a form of cumulant expansion. In this way, we will have developed more fully a 
non-equilibrium information thermodynamics since, using (3.6), we have 

( A ( s ) ) ,  =Tr  A ( s ) p * ( t )  (3.8) 

A(s)=iLA(s)=-[H,  A(s)] (3.9) 

where 

i 
h 

from which it will be possible to estimate the equations of motion of the mean values 
via the cumulant expansion. 

We consider again the solution to the Liouville equation 

subject to the initial condition p* (  t o )  = p’( t o )  with 

A t )  = [Z(p(t))l-’ exp[-B(t) * AI 
with the notation of sections 2 and 3.  Defining 

U (  t ,  t ’ )  = exp[ -iL( t - t ’ ) ]  

(2.21) 

(3.10) 

(3.11a) 

we see that 
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i.e. 

(3.11b) 

(3.12) 

A ( t o - r ) = e x p ( F ( t o - r ) ) A e x p (  - T ( t o - t ) ) .  (3.13) 

However, since Tr p * ( t )  = 1 at all times, we have 

p*(t)=exp[-P(t0) * A(ro-t)l(Trexp[-p(to) - A ( ? , -  t)]}F1 (3.14) 
which follows also from 

(3.15) 

and the cyclic invariance of the trace. Finally, since 

P ( t o )  * A(t,- t )  = P (  t )  * A - 

i.e. 

‘ a  
[ P ( t ’ )  * A (  t ‘ -  t ) ]  (3.16a) 

P(to)  * A (  t o -  t )  = P (  t )  * A - dt’[A( t’ - t )  * p (  t’) + A (  t’ - t )  f i (  t ’ ) ]  (3.16b) 

where 

Ak(t’- t )=exp[i l ( t ’ -  t)]Ak 

i.e. 
(3.17a) 

(3.17b) 

with 

1 A,( f ’ - t ) = - [ H, A( t ’  - t )]  k = 1,2,  . . . , r (3.18) h 

and 

k =  1,2,  . .  . , r. (3.19) 
ap, ( t ’ )  

a t  
P k ( t ’ )  =- 

Substituting (3.16b) into (3.14) we obtain 

p * ( t )  = [Q(t)l-’  ex*( - P ( t )  - 
and 

dt‘[A(t’- t )  - P (  t ‘ )  + A ( t ‘ -  t )  f i c t ’ ) ] )  (3.20) 

Q ( t )  = T r  exp( - P ( t )  (3.21) 

This argument follows substantially that given by Wilcox [61]. 
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Now, if we examine p * ( t )  as given by (3.20) in conjunction with (3.21), we see 

p =exp(A+B)[Trexp(A+B)]- '  (3.22) 

where A and B are arbitrary operators. The idea of the cumulant expansion, which 
we now introduce, is to consider a second simpler density matrix 

po = exp(A)[Tr exp(A)]-' (3.23) 

and to express any mean value over p in terms of mean values over p o .  
We have outlined already how this expansion will be applied: any mean value over 

p*(  t )  is to be expressed in terms of mean values over p'( t)-the representative micro- 
state-which are supposed to be the least biased estimates possible in a situation where 
our knowledge is represented by M ,  ( M , J .  The idea of expressing any mean value 
over one density matrix and discussed above is due to Jaynes and Heims [ 191. Jaynes 
and Heims did not, however, apply the idea in the manner that we are going to. Neither 
have Jaynes or Grandy in more recent publications [25,30,31] applied the expansion 
(introduced below) in the manner discussed in this paper. In the above quoted papers 
the cumulant expansion of Jaynes [19] is used purely as a calculational tool to 
approximate mean values over p and not as a (self-consistant) principle as used here 
(although the expansion is used approximately as well). That is, all mean values are 
to be calculated on the basis of the information thermodynamics approach and the 
cumulant expansion tells us how to do this, in principle at least, exactly. The results 
of the perturbation/cumulant expansion are summarised in the following theorem. 
The proof of theorem 3.1 is given, e.g. in Jaynes and Heims [19] the theorem itself is 
given in a slightly modified form presented in [25]. 

Theorem 3.1 (perturbation/cumulant expansion). The mean value of an arbitrary observ- 

that p * ( t )  is of the general form 

able, C say, over p :  

p =exp(A+B)[Trexp(A+B)]- '  

may be expressed in terms of mean values over p o :  

po= exp(A)[Tr exp(A)]-' 

Thus, if 

( C ) = T r  Cp 

(C) - (e), = c (( wmo - ( wn )o( C)O) 

( 0 0  = Tr cpo 

then 
I 

n = 1  

where W ,  = VI and 
n-1  

wn vn- ( w k ) O v n - k  n > l  
k = l  

with the V,, defined via 

V,, =I' dx, 1" d x 2 . .  . Ioxn-' dx, B(x,) 
0 0 

where 
B(x)  e-xAB exA 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

B(xn 1 f l 2 l  (3.27) 

(3.28) 
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The linear term will be of most importance in the next section. It is 

( C )  - (C), = I,,’ dx((e- eXACh - (B)o(C)o) .  (3.29) 

It is a simple matter to apply theorem 3.1 with p* (  t )  replacing p and p’( t )  replacing 
po. We simply identify 

(C)  = Tr Cp*(  t )  

A =  - p (  t )  - A 

B = dt’[A( t ’ -  t )  p(  t’) + A( t’-  t )  B(t’)]  

(C), = Tr Cp’( t )  

(3.30) 

10 

and we may evaluate any non-equilibrium expression that arises in information ther- 
modynamics, involving the mean values of observables over p* (  t ) ,  to arbitrary order 
in terms of mean values estimated using p’( t ) .  In this way we see that we have extended 
the information thermodynamics approach to non-equilibrium statistical mechanics. 

4. Transport phenomena 

We will now apply the expansion of theorem 3.1 in conjunction with (3.29) and (3.30) 
to the discussion of transport phenumena in a simple fluid, as defined by Grandy [30], 
and hence to irreversible thermodynamics. We consider the state of a system (a fluid) 
which is macroscopically defined by given fields of temperature, chemical potential 
and velocity, i.e. by the densities of energy, particle number and momentum, as 
functions of the space (and possibly time) coordinates. Thus we consider a situation 
in which energy, mass and momentum occurs, no electric or magnetic fields are applied 
and no phase transitions occur. 

The chosen parameters are assumed sufficient for a macroscopic description of the 
system. Further, it is assumed [17] ‘that the system is in thermal, material and 
mechanical contact with a combination of thermostats and reservoirs, maintaining the 
given distribution of parameters’. In fact, we will be considering essentially just the 
system alone as we will be trying to obtain a description of non-equilibrium processes 
within the system only. This idea is discussed in detail by Mori [4, 111 and was used 
by Zubarev [12,13] who, as Robertson and Mitchell point out [21] ‘ . . .obtains an 
expression for a non-equilibrium statistical density that depends only upon the conju- 
gate variables of the system alone, with no reference to the reservoirs. [ , . . ] this 
nonequilibrium statistical density is easily shown to satisfy the Liouville equation for 
the isolated system alone’. With the above in mind, we will apply the formalism of 
the previous section where we assume in particular that H, the Hamiltonian of the 
liquid, does not include the interaction with the reservoirs [ l l ] .  

Mathematically, this situation is described by an r set consisting of H (  r ) ,  p (  r )  and 
nj( r ) (  j = 1, . . . , r - 2 )  which are, respectively, the density operators for energy, momen- 
tum and particle number ( r  - 2 species). The macrostate deals with the mean values 
of these quantities which are assumed known over some common volume V at an 
initial time f o e  The representative microstate for this situation is therefore 
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where (note that, as defined in (4.2) and (4.3), A2 and P2 are vectors, while the other 
Ak and P k  are scalars) 

A l ( r ) =  H ( r )  

In this case, since the Pk(r,  t )  are determined from 

we have (Jaynes [23], Zubarev [17]) 

with P(r, t )  the inverse temperature, p j ( r ,  t ) ( j  = 1, . . . , r -2)  the chemical potentials 
and V(r, t )  the bulk velocity of the fluid. The ‘non-equilibrium ensemble’ (3.20) is in 
this case therefore given by 

p*(t)={Q(t)}-’eXp( - i [ drPk(r, f ) A k ( r ) + j f  dt’  i [ d r  
k = l  V 1” k = l  v 

with the Ak and P k  given by (4.2) and (4.4), respectively. 
To discuss the transport processes in the fluid, we shall begin from the laws of 

conservation of energy, particle number and momentum in local form (for details of 
the exact form of the quantities appearing in the conservation laws and in relations 
(4.2) we refer to Zubarev [17] or Grandy [30]) which may be written: 

B ( r ) + V j H ( r )  = o  

r i j ( r )+V 9 j n , ( r ) = O  

d ( r ) + V  * T ( r )  = O  (4.6) 

( j =  1, * .  . , r-2) .  

In (4.6) j ,  is the energy flux density, T ( r )  is the stress tensor (assumed symmetric) 
and j , ( r )  is the particle flux density of the j th  species of particle. Equations (4.6) 
have classical equivalents, see e.g. McLennan [ 151. Equations (4.6) may be rewritten 
in a more compact form: 

A , ( r ) + V  * j k ( r )  = o  k = l , .  . . ,  r 

where Ak(r) (k  = 1,.  . . , r )  are defined by (4.2) and 

j l ( r )  ‘ j H ( r )  

j A r )  = T ( r )  

jk-t2(r) = j n ,  j , k = l ,  . . . ,  r-2.  

(4.7) 

(4.8) 
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It follows from definitions (4.2) and (4.8) that the densities Ak(r )  may be scalars or 
vectors and the fluxes j k ( r )  vectors or tensors. (The dot after the nabla operator in 
(4.7) denotes a scalar product, i.e. the divergence of a vector or tensor.) Note that 
the momentum density and the related particle fluxes are assumed to be related 
according to 

(4.9) 

where mj is the particle mass of the j th  species. 

do this we rewrite (4.7) in the Heisenberg representation: 

Ak(r, 1‘- t )  = -V . jk(r ,  t ‘ -  t )  

We wish to express the non-equilibrium ensemble (4.5) in terms of the fluxes. To 

(4.10) k =  1,. . . , r 

substitute (4.10) into (4.5) and integrate. Thus, since 
c c 

- J v d r V  * j k ( r ,  t ’ - t )Pk(r , t ’ )=  d r jk ( r , f ’ - t )  .OPk(r,  t ’ )  (4.11) J v  
where the identity 

V ( P k j k ) = ( V P k )  . j , + P d V  . j k )  

has been used, and the surface integral 
e c 

(4.12) 

(4.13) 

has been neglected [30], where a V  is the surface enclosing V and d S  is an element 
of d V. The non-equilibrium ensemble now becomes: 

p * ( t )  = [O(t)l-’ exp( - dr’Pk(r‘, f )Ak(r ’ )+  
k = l  V 

x[jk(r’ ,  t ‘ - t )  Vpk(r’, t ’ )+Ak(r’ ,  t - t )bk( r ’ ,  t’)] 

with 

dr‘Pk(r’ ,  t )Ak(r’)+ 

(4.14) 

(4.15) 

The fluxes of energy, particles and momentum through the surface of the system which 
we have neglected correspond to the ‘non-conservative forces’ which McLennan intro- 
duced to describe the influence of a thermostat (Zubarev [17]). Implicit in this 
assumption is the idea that at the end of the calculations we take the thermodynamic 
limit. We refer to Grandy [30] for a further discussion of this point, and also to Mori 
[4, 111 who relates the requirement of large volumes to the existence of various 
relaxation timescales in the system. 

The equations of motion when expressed in terms of the mean fluxes over (4.14) are 

1 x[ jk( r ‘ ,  t ’ -  t ) .  V&(r’, t’)+Ak(r’,  t’-f)Pk(r‘,  t’)] . 

uk(r, t )  = -V Trj,(r)p*(t)  

which follows from (4.7). 

(4.16) 
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We will use the expansion of theorem 3.1 to express the mean fluxes ( jk ( r ) )=  
Trjk(r)p*(  t )  in terms of mean values over the representative microstate p”( t ) ,  denoted 
by ( . We will assume that the gradients in the fields and their time rate of change 
(the ‘thermodynamic forces’-Zubarev [12]) are small enough so that we may consider 
the first order, i.e. linear, terms in the expansion of theorem 3.1 only. Indeed, as Jaynes 
has pointed out: ‘Physically [ . . . 3 one can argue that, in most experimentally realisable 
cases, irreversible flows (A) are already ‘in progress’ at the time the experiment is 
started, and (B) take place slowly, so that the low order distribution functions and 
expectation values of measurable quantities must be already slowly-varying functions 
of time and position’ [25, p 931. 

From (3.29) we have 

dx((e-‘AB e“AC),-(B)o(C),). (4.17) 

When we identify 

C = j k ( r )  

dt’  dr’[j,(r’, t ’ - t )  .vp,(r‘ ,  t ‘ )+Ak(r’ ,  t ’ - t ) b k ( r ’ ,  t ’ ) ]  
B=!ii k = l  1” 
and 

(4.18) 

we find that (4.17) becomes 

x {(ji(r) ex~(Ax)( jk( r ’ ,  t ’ -  t )  -(jk(r‘, t ’ -  t ) )o)  ex~(-Ax))o vPk(r’, t ’ )  
+( j i ( r )  exp(Ax)(Ak(r’, t ‘ -  2)-(Ak(r’, t‘- t ) ) o )  

exp(-Ax))Obk(r‘, 1‘) ) .  (4.19) 
Note that, to obtain (4.19), we have used the fact that 

Io1 dx(exp(-Ax)(j,(r‘, t ’ -  t )  -(jk(r’, 1‘- t ) ) o )  exp(h ) j i ( r ) )o  

dx(j , ( r )  exp(Ax)(jk(r’, t ’ -  t )  -(jk(r’ ,  t ‘ -  exp(-Ax)),. (4.20) 

The equality (4.20) is readily obtained by changing the integration variable x to 1 -x  
after invoking the cyclic invariance of the trace. 

= lo1 
If we introduce the notation 

W, G),= dx(Fexp(Ax)(G-(G),)  exp(-Ax)), (4.21) 

(4.22) 
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Following Grandy [30] we note that: 'In general, determinations of transport coefficients 
are carried out in stationary processes, and so we employ the steady-state scenario.. . '. 

For the steady state, bk(r ' ,  t ' )  = 0, k = 1, 2, . . . , r, and (4.22) reduce to 

with 

(4.23) 

(4.24) 

the 'transport coefficients'. 
Equations (4.19)-(4.24) exhibit non-local dependence of the fluxes at a point on 

conditions throughout the surrounding medium and on earlier times. They are similar 
to equations derived by Zubarev [12,13] and also by McLennan [15]; they in fact 
become equivalent to the results of Zubarev and McLennan in the limit to+ -CO. The 
transport coefficients Lik become then, changing variables from t' to T = t' -- t ,  

(4.25) 

(4.26) 

The expression (4.25) for the transport coefficients is identical to that of Zubarev [13] 
while that of (4.26) corresponds to McLennan's results [15]. 

As mentioned previously, Robertson derived an expression similar to (4.26) for the 
heat conductivity coefficient and in his more recent article [32] has extended these 
considerations. Grandy [30] and Jaynes [25] have derived similar formalisms to that 
discussed above. 

Again, the formal extension of the interval t - to+ CO is discussed by Mori [ 111 .  
The argument is that the correlation functions ( j i ( r ) , jk ( r r ,  T ) ) ~  ' . . . decay approximately 
exponentially to zero in times comparable to the mean free time of molecules.' See 
also the work of Robertson [20], Jaynes [25] and Grandy [30,31] where this assumption 
is used in the information theory approach. 

To expose the connection with irreversible thermodynamics, we will simplify the 
discussion somewhat by considering, from now on, systems in which only energy and 
mass transport occurs. That is, we will ignore the momentum transport. In this situation 
the r set is contracted as is the argument of the representative microstate. If we further 
restrict ourselves to stationary processes (Sk = 0) then p (  t )  reduces to, in the case of 
one-particle species, 

p={Z(p( r ' ) ,  p(r')}-l exp P(r ' ) [H(r ' ) -p(r ' )n(r ' ) ]  dr '  (4.27) 

which is the so-called 'local equilibrium' density matrix. 
It is well known (see e.g. Chester [l])  that the average fluxes, calculated with the 

local equilibrium density matrix are zero. This means that, if we carry through the 
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analysis of the preceding part of this section with p defined by (4.27), that (4.22) will 
become 

(4.28) 

1=1 ‘ J  U 

S ( M , )  = - K  C d r ~ , ( r ) ~  ( j , ( r ) )  

since S ( M , )  = K(-log P ) ~ =  K(-log p) .  Using the identity 

V (PA)=Pl(V . J , ) + ( V P , )  .jt 
and ignoring the surface integrals [30], (4.32) becomes 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

However, since ( ji( r)) is given by (4.28), in the linear approximation with small gradients 
in the fields, we have, finally, for the entropy production: 

S ( M , ) = K  i j v d r  { dr ’VPi ( r ) .  Lik(r,r’)  .VPk(r‘) ,  (4.35) 
t , k = l  

According to Zubarev [12] and McLennan [62] the Lik satisfy the Onsager relations 
[26] and the entropy production, as given by (4.35), is positive (retarded solution of 
Liouville’s equation having so far been chosen). 

5. Discussion and conclusions 

The theory that we have outlined above has some minor advantages over the related 
theories of Zubarev and McLennan. Zubarev [ 173 arrived at a statistical index almost 
identical to relation (3.20), and hence relation (4.14), by his theory of ‘quasi-integrals 
of the motion’. Again, McLennan [ 151 constructed a probability distribution function 
almost identical to (3.20) by explicit consideration of non-conservative forces describing 
the influence of a thermostat [ 141. Specifically, Zubarev arrived at the expression [ 161 

(5.1) 
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where 

@( - t )  = log Tr exp ( - e  [~Edr’eEr’ ( f i ( r+r ’ )  . A ( r ‘ )  (5.2) 

By evaluating the integrals appearing in (5.1) and (5.2) by parts we arrive at expressions 
that are very similar to (3.20) and (3.21) [17]. At the end of a calculation using (5.1) 
and (5.2) one must let E + O .  Equation (5.1) can be shown to satisfy the Liouville 
equation with a weight [63] 

a p ( t )  -+iLp(t) = - & ( p ( t ) - p ’ ( t ) ) .  
a t  

(5.3) 

In passing, we note that the work of Zubarev has been generalised by Algarte et a1 
[64]. In [64] a non-equilibrium density matrix is constructed that includes both 
Zubarev’s work and that of Green and Mori [8] as special cases. 

McLennan’s operator is of the form 

p ( t )  =At)  exp(D(t))  (5.4) 

where 

D ( r ) = [ ’  -m dr’[ V dr[A(t‘- t )  a p ( t ’ ) + A ( t ’ - t )  . f i ( t ’ ) ]  ( 5 . 5 )  

and p (  t )  + p’( t )  as t + -CO. Equation (5.4) satisfies the Liouville equation with external 
sources. Although the three theories have an almost identical formalism, this formalism 
has, of course, an entirely different origin in all three cases. The theory presented in 
this paper does though have certain advantages. 

First, in order to fix the value of p ( t )  which appears in (5.1) and (5.3) Zubarev 
and McLennan are forced to assume the validity of (2.22) as an added assumption. 
In the present approach, relations (2.22) are built into the formalism from the beginning. 

Secondly, the lower limit in the time integrals of equations (5.1), (5.2) and (5.5) 
which arise in the theories of Zubarev and McLennan are only the special case of 
to-+ -CO of the present approach; this is equivalent to the initial condition 

(5.6) 
While (5.6) has the advantage of definiteness in a calculation, it is nevertheless quite 
a severe logical restriction because p* (  to) = p’( to)  is the mathematical description of 
the imposition of constraints in an experiment. Robertson has also criticised the 
appearance of the weighting factor ear in Zubarev’s approach; indeed this factor appears 
also in the work of McLennan [15,62]. However, as Grandy has pointed out [30] 
such a factor may be essential to ensure the convergence of the infinite time integrals. 
The convergence factor e“ may be incorporated into the current approach. 

If we consider that we are dealing with slowly varying functions of time and 
position, then we may consider the steady state to be approached as a limit by defining 
Pk(r, t)=exp(Ekt)Pk(r) with E k + 0 , k = l , 2 ,  . . .  , r .  From this weget B k = & d k + ~ a s  
&k + 0. So, provided the appropriate integrals converge, the third term on the right-hand 
side of (4.22) will vanish as &k +. 0 and we will be left with (4.23) with the Lik defined 
by 

p ( t +  -CO) = p’(t + -CO). 

Lik(r, r‘, t )  = lim dr’(jt(r), jk(r’ ,  t ’ -  t ) )o  exp(skt’). (5.7) 
E k + O  I,: 
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In (5.7) it is assumed that we let & k  + 0 before taking the thermodynamic limit [17]. 
(Note that similar assumptions may be made for closed systems undergoing relaxation 
hydrodynamic processes from an initial steady state [20,25].) 

A third factor, connected with the first point mentioned in the first paragraph of 
this section, is the identification of the thermodynamic entropy with the macrostate 
entropy which leads in a natural fashion to the expression (4.35) for the entropy 
production. This indeed has an interpretation of relevant information leaking from 
the macrostate, an idea due to Nordholm and Zwanzig [7]. 
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